Adam Meets Eph: An ADAM Substrate Recognition Module Acts as a Molecular Switch for Ephrin Cleavage In trans

نویسندگان

  • Peter W. Janes
  • Nayanendu Saha
  • William A. Barton
  • Momchil V. Kolev
  • Sabine H. Wimmer-Kleikamp
  • Eva Nievergall
  • Carl P. Blobel
  • Juha-Pekka Himanen
  • Martin Lackmann
  • Dimitar B. Nikolov
چکیده

The Eph family of receptor tyrosine kinases and their ephrin ligands are mediators of cell-cell communication. Cleavage of ephrin-A2 by the ADAM10 membrane metalloprotease enables contact repulsion between Eph- and ephrin-expressing cells. How ADAM10 interacts with ephrins in a regulated manner to cleave only Eph bound ephrin molecules remains unclear. The structure of ADAM10 disintegrin and cysteine-rich domains and the functional studies presented here define an essential substrate-recognition module for functional interaction of ADAM10 with the ephrin-A5/EphA3 complex. While ADAM10 constitutively associates with EphA3, the formation of a functional EphA3/ephrin-A5 complex creates a new molecular recognition motif for the ADAM10 cysteine-rich domain that positions the proteinase domain for effective ephrin-A5 cleavage. Surprisingly, the cleavage occurs in trans, with ADAM10 and its substrate being on the membranes of opposing cells. Our data suggest a simple mechanism for regulating ADAM10-mediated ephrin proteolysis, which ensures that only Eph bound ephrins are recognized and cleaved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function.

The ADAM10 transmembrane metalloprotease cleaves a variety of cell surface proteins that are important in disease, including ligands for receptor tyrosine kinases of the erbB and Eph families. ADAM10-mediated cleavage of ephrins, the ligands for Eph receptors, is suggested to control Eph/ephrin-mediated cell-cell adhesion and segregation, important during normal developmental processes, and imp...

متن کامل

Cytoplasmic Relaxation of Active Eph Controls Ephrin Shedding by ADAM10

Release of cell surface-bound ligands by A-Disintegrin-And-Metalloprotease (ADAM) transmembrane metalloproteases is essential for signalling by cytokine, cell adhesion, and tyrosine kinase receptors. For Eph receptor ligands, it provides the switch between cell-cell adhesion and repulsion. Ligand shedding is tightly controlled by intrinsic tyrosine kinase activity, which for Eph receptors relie...

متن کامل

ADAM Gene Expression in The Adult CNS and Genetic Aberrations in Cancer Cells

ADAM metalloprotease-disintegrins share a common modular structure of functional domains for proteolytic, cell adhesion, and signaling interactions. The metalloprotease domain of oughly half of the known ADAMs contain an intact consensus metzincin catalytic site, and they are thus thought to function as active metalloproteases. The types of interactions mediated by ADAMs are expressly conspicu...

متن کامل

ADAM and Eph: How Ephrin-Signaling Cells Become Detached

Ephrin ligands presented on one cell surface associate with their receptors on the surface of a juxtaposed cell, often resulting in cell-cell repulsion. In this issue of Cell, Janes et al. (2005) show that the ephrin ligand can be proteolytically released from its membrane tether by a complex on the opposing cell composed of the ephrin receptor and an ADAM metalloprotease.

متن کامل

Engaging Strategies in Adam Bede

One of the narrative strategies employed in different ways by men and women writers is the presentation of narrator. The significance of narrator is so much that it differentiates between the realistic and non-realistic fiction and specifically men's and women's writings in realistic fiction. Robyn R Warhol's theory based on Genette's is applied to Adam Bede by George Eliot to focus on woman as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2005